Asymptotics for high-dimensional covariance matrices and quadratic forms with applications to the trace functional and shrinkage
Ansgar Steland and
Rainer von Sachs
Stochastic Processes and their Applications, 2018, vol. 128, issue 8, 2816-2855
Abstract:
We establish large sample approximations for an arbitrary number of bilinear forms of the sample variance–covariance matrix of a high-dimensional vector time series using ℓ1-bounded and small ℓ2-bounded weighting vectors. Estimation of the asymptotic covariance structure is also discussed. The results hold true without any constraint on the dimension, the number of forms and the sample size or their ratios. Concrete and potential applications are widespread and cover high-dimensional data science problems such as tests for large numbers of covariances, sparse portfolio optimization and projections onto sparse principal components or more general spanning sets as frequently considered, e.g. in classification and dictionary learning. As two specific applications of our results, we study in greater detail the asymptotics of the trace functional and shrinkage estimation of covariance matrices. In shrinkage estimation, it turns out that the asymptotics differ for weighting vectors bounded away from orthogonality and nearly orthogonal ones in the sense that their inner product converges to 0.
Keywords: Brownian motion; Linear process; Long memory; Strong approximation; Quadratic form; Trace (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414917302582
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:128:y:2018:i:8:p:2816-2855
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2017.10.007
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().