EconPapers    
Economics at your fingertips  
 

The divisible sandpile with heavy-tailed variables

Alessandra Cipriani, Rajat Subhra Hazra and Wioletta M. Ruszel

Stochastic Processes and their Applications, 2018, vol. 128, issue 9, 3054-3081

Abstract: This work deals with the divisible sandpile model when an initial configuration sampled from a heavy-tailed distribution. Extending results of Levine et al. (2015) and Cipriani et al. (2016) we determine sufficient conditions for stabilization and non-stabilization on infinite graphs. We determine furthermore that the scaling limit of the odometer on the torus is an α-stable random distribution.

Keywords: Divisible sandpile; Heavy-tailed variables; α-stable random distribution (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414917302739
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:128:y:2018:i:9:p:3054-3081

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2017.10.013

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:128:y:2018:i:9:p:3054-3081