The divisible sandpile with heavy-tailed variables
Alessandra Cipriani,
Rajat Subhra Hazra and
Wioletta M. Ruszel
Stochastic Processes and their Applications, 2018, vol. 128, issue 9, 3054-3081
Abstract:
This work deals with the divisible sandpile model when an initial configuration sampled from a heavy-tailed distribution. Extending results of Levine et al. (2015) and Cipriani et al. (2016) we determine sufficient conditions for stabilization and non-stabilization on infinite graphs. We determine furthermore that the scaling limit of the odometer on the torus is an α-stable random distribution.
Keywords: Divisible sandpile; Heavy-tailed variables; α-stable random distribution (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414917302739
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:128:y:2018:i:9:p:3054-3081
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2017.10.013
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().