EconPapers    
Economics at your fingertips  
 

Hereditary tree growth and Lévy forests

Thomas Duquesne and Matthias Winkel

Stochastic Processes and their Applications, 2019, vol. 129, issue 10, 3690-3747

Abstract: We introduce the notion of a hereditary property for rooted real trees and we also consider reduction of trees by a given hereditary property. Leaf-length erasure, also called trimming, is included as a special case of hereditary reduction. We only consider the metric structure of trees, and our framework is the space T of pointed isometry classes of locally compact rooted real trees equipped with the Gromov–Hausdorff distance. We discuss general tightness criteria in T and limit theorems for growing families of trees. We apply these results to Galton–Watson trees with exponentially distributed edge lengths. This class is preserved by hereditary reduction. Then we consider families of such Galton–Watson trees that are consistent under hereditary reduction and that we call growth processes. We prove that the associated families of offspring distributions are completely characterised by the branching mechanism of a continuous-state branching process. We also prove that such growth processes converge to Lévy forests. As a by-product of this convergence, we obtain a characterisation of the laws of Lévy forests in terms of leaf-length erasure and we obtain invariance principles for discrete Galton–Watson trees, including the super-critical cases.

Keywords: Real tree; Gromov–Hausdorff distance; Galton–Watson tree; Lévy tree; Leaf erasure; Limit theorems; Tightness; Invariance principle; Continuous-state branching process (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414918305830
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:129:y:2019:i:10:p:3690-3747

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2018.10.007

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:129:y:2019:i:10:p:3690-3747