EconPapers    
Economics at your fingertips  
 

On the trajectory of an individual chosen according to supercritical Gibbs measure in the branching random walk

Xinxin Chen, Thomas Madaule and Bastien Mallein

Stochastic Processes and their Applications, 2019, vol. 129, issue 10, 3821-3858

Abstract: Consider a branching random walk on the real line. Madaule (2016) showed the renormalized trajectory of an individual selected according to the critical Gibbs measure converges in law to a Brownian meander. Besides, Chen (2015) proved that the renormalized trajectory leading to the leftmost individual at time n converges in law to a standard Brownian excursion. In this article, we prove that the renormalized trajectory of an individual selected according to a supercritical Gibbs measure also converges in law toward the Brownian excursion. Moreover, refinements of this results enables to express the probability for the trajectories of two individuals selected according to the Gibbs measure to have split before time t, partially answering a question of Derrida and Spohn (1988).

Keywords: Branching random walk; Overlap distribution; Extremal process; Random walk; Excursion (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414918306252
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:129:y:2019:i:10:p:3821-3858

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2018.11.006

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:129:y:2019:i:10:p:3821-3858