Forward–backward stochastic differential equations with monotone functionals and mean field games with common noise
Saran Ahuja,
Weiluo Ren and
Tzu-Wei Yang
Stochastic Processes and their Applications, 2019, vol. 129, issue 10, 3859-3892
Abstract:
We consider a system of forward–backward stochastic differential equations (FBSDEs) with monotone functionals. We show that such a system is well-posed by the method of continuation similarly to Peng and Wu (1999) for classical FBSDEs. As applications, we prove the well-posedness result for a mean field FBSDE with conditional law and show the existence of a decoupling function. Lastly, we show that mean field games with common noise are uniquely solvable under a linear-convex setting and weak-monotone cost functions and prove that the optimal control is in a feedback form depending only on the current state and conditional law.
Keywords: Forward–backward stochastic differential equations; Monotone functional; Mean field FBSDE with conditional law; Mean field games with common noise (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414918306240
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:129:y:2019:i:10:p:3859-3892
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2018.11.005
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().