EconPapers    
Economics at your fingertips  
 

Disagreement percolation for Gibbs ball models

Christoph Hofer-Temmel and Pierre Houdebert

Stochastic Processes and their Applications, 2019, vol. 129, issue 10, 3922-3940

Abstract: We generalise disagreement percolation to Gibbs point processes of balls with varying radii. This allows to establish the uniqueness of the Gibbs measure and exponential decay of pair correlations in the low activity regime by comparison with a sub-critical Boolean model. Applications to the Continuum Random Cluster model and the Quermass-interaction model are presented. At the core of our proof lies an explicit dependent thinning from a Poisson point process to a dominated Gibbs point process.

Keywords: Continuum random cluster model; Disagreement percolation; Dependent thinning; Boolean model; Stochastic domination; Phase transition; Unique Gibbs state; Exponential decay of pair correlation (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414918306227
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:129:y:2019:i:10:p:3922-3940

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2018.11.003

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:129:y:2019:i:10:p:3922-3940