EconPapers    
Economics at your fingertips  
 

About the rate function in concentration inequalities for suprema of bounded empirical processes

Antoine Marchina

Stochastic Processes and their Applications, 2019, vol. 129, issue 10, 3967-3980

Abstract: We provide new deviation inequalities in the large deviations bandwidth for suprema of empirical processes indexed by classes of uniformly bounded functions associated with independent and identically distributed random variables. The improvements we get concern the rate function which is, as expected, the Legendre transform of the suprema of the log-Laplace transform of the pushforward measure by the functions of the considered class (up to an additional corrective term). Our approach is based on a decomposition in martingale together with some comparison inequalities.

Keywords: Concentration inequality; Empirical process; Large deviation bandwidth; Comparison inequality; Martingale method (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414918306355
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:129:y:2019:i:10:p:3967-3980

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2018.11.010

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:129:y:2019:i:10:p:3967-3980