Statistical inference for misspecified ergodic Lévy driven stochastic differential equation models
Yuma Uehara
Stochastic Processes and their Applications, 2019, vol. 129, issue 10, 4051-4081
Abstract:
We consider the estimation problem of misspecified ergodic Lévy driven stochastic differential equation models based on high-frequency samples. We utilize a widely applicable and tractable Gaussian quasi-likelihood approach which focuses on mean and variance structure. It is shown that the Gaussian quasi-likelihood estimators of the drift and scale parameters still satisfy polynomial type probability estimates and asymptotic normality at the same rate as the correctly specified case. In their derivation process, the theory of extended Poisson equation for time-homogeneous Feller Markov processes plays an important role. Our result confirms the reliability of the Gaussian quasi-likelihood approach for SDE models.
Keywords: Lévy driven stochastic differential equation; Misspecified model; Gaussian quasi-likelihood estimation; Extended Poisson equation; High-frequency sampling; Stepwise estimation (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030441491830632X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:129:y:2019:i:10:p:4051-4081
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2018.11.007
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().