Strong laws of large numbers for intermediately trimmed Birkhoff sums of observables with infinite mean
Marc Kesseböhmer and
Tanja Schindler
Stochastic Processes and their Applications, 2019, vol. 129, issue 10, 4163-4207
Abstract:
We consider dynamical systems on a finite measure space fulfilling a spectral gap property and Birkhoff sums of a non-negative, non-integrable observable. For such systems we generalize strong laws of large numbers for intermediately trimmed sums only known for independent random variables. The results split up in trimming statements for general distribution functions and for regularly varying tail distributions. In both cases the trimming rate can be chosen in the same or almost the same way as in the i.i.d. case. As an example we show that piecewise expanding interval maps fulfill the necessary conditions for our limit laws. As a side result we obtain strong laws of large numbers for truncated Birkhoff sums.
Keywords: Almost sure convergence theorems; Trimmed sum process; Transfer operator; Spectral method; Piecewise expanding interval map; Strong law of large numbers (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414918301984
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:129:y:2019:i:10:p:4163-4207
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2018.11.015
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().