EconPapers    
Economics at your fingertips  
 

The tail empirical process of regularly varying functions of geometrically ergodic Markov chains

Rafał Kulik, Philippe Soulier and Olivier Wintenberger

Stochastic Processes and their Applications, 2019, vol. 129, issue 11, 4209-4238

Abstract: We consider a stationary regularly varying time series which can be expressed as a function of a geometrically ergodic Markov chain. We obtain practical conditions for the weak convergence of the tail array sums and feasible estimators of cluster statistics. These conditions include the so-called geometric drift or Foster–Lyapunov condition and can be easily checked for most usual time series models with a Markovian structure. We illustrate these conditions on several models and statistical applications. A counterexample is given to show a different limiting behavior when the geometric drift condition is not fulfilled.

Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414915301307
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:129:y:2019:i:11:p:4209-4238

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2018.11.014

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:129:y:2019:i:11:p:4209-4238