EconPapers    
Economics at your fingertips  
 

Displacement exponent for loop-erased random walk on the Sierpiński gasket

Kumiko Hattori

Stochastic Processes and their Applications, 2019, vol. 129, issue 11, 4239-4268

Abstract: We prove that loop-erased random walks on the finite pre-Sierpiński gaskets can be extended to a loop-erased random walk on the infinite pre-Sierpiński gasket by using the ‘erasing-larger-loops-first’ method, and obtain the asymptotic behavior of the walk as the number of steps increases, in particular, the displacement exponent and a law of the iterated logarithm.

Keywords: Loop-erased random walk; Displacement exponent; Growth exponent; Law of the iterated logarithm; Sierpiński gasket; Fractal (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030441491830680X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:129:y:2019:i:11:p:4239-4268

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2018.11.021

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:129:y:2019:i:11:p:4239-4268