A diffusion approximation for limit order book models
Ulrich Horst and
Dörte Kreher
Stochastic Processes and their Applications, 2019, vol. 129, issue 11, 4431-4479
Abstract:
This paper derives a diffusion approximation for a sequence of discrete-time one-sided limit order book models with non-linear state dependent order arrival and cancellation dynamics. The discrete time sequences are specified in terms of an R+-valued best bid price process and an Lloc2-valued volume process. It is shown that under suitable assumptions the sequence of interpolated discrete time models is relatively compact in a localized sense and that any limit point satisfies a certain infinite dimensional SDE. Under additional assumptions on the dependence structure we construct two classes of models, which fit in the general framework, such that the limiting SDE admits a unique solution and thus the discrete dynamics converge to a diffusion limit in a localized sense.
Keywords: Functional limit theorem; Diffusion limit; Scaling limit; Convergence of stochastic differential equations; Limit order book (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414918306975
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:129:y:2019:i:11:p:4431-4479
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2018.11.023
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().