Asymptotic Log-Harnack inequality and applications for stochastic systems of infinite memory
Jianhai Bao,
Feng-Yu Wang and
Chenggui Yuan
Stochastic Processes and their Applications, 2019, vol. 129, issue 11, 4576-4596
Abstract:
The asymptotic log-Harnack inequality is established for several kinds of models on stochastic differential systems with infinite memory: non-degenerate SDEs, neutral SDEs, semi-linear SPDEs, and stochastic Hamiltonian systems. As applications, the following properties are derived for the associated segment Markov semigroups: asymptotic heat kernel estimate, uniqueness of the invariant probability measure, asymptotic gradient estimate (hence, asymptotically strong Feller property), as well as asymptotic irreducibility.
Keywords: Asymptotic Log-Harnack inequality; Asymptotic gradient estimate; Asymptotic heat kernel; Asymptotic irreducibility (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414918307166
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:129:y:2019:i:11:p:4576-4596
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2018.12.010
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().