Heavy tails for an alternative stochastic perpetuity model
Thomas Mikosch,
Mohsen Rezapour and
Olivier Wintenberger
Stochastic Processes and their Applications, 2019, vol. 129, issue 11, 4638-4662
Abstract:
In this paper we consider a stochastic model of perpetuity-type. In contrast to the classical affine perpetuity model of Kesten (1973) and Goldie (1991) all discount factors in the model are mutually independent. We prove that the tails of the distribution of this model are regularly varying both in the univariate and multivariate cases. Due to the additional randomness in the model the tails are not pure power laws as in the Kesten–Goldie setting but involve a logarithmic term.
Keywords: Kesten–Goldie theory; Perpetuity; Heavy tail; Large deviation; Power-law tail; Change of measure (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414918307142
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:129:y:2019:i:11:p:4638-4662
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2018.12.008
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().