EconPapers    
Economics at your fingertips  
 

On the centre of mass of a random walk

Chak Hei Lo and Andrew R. Wade

Stochastic Processes and their Applications, 2019, vol. 129, issue 11, 4663-4686

Abstract: For a random walk Sn on Rd we study the asymptotic behaviour of the associated centre of mass process Gn=n−1∑i=1nSi. For lattice distributions we give conditions for a local limit theorem to hold. We prove that if the increments of the walk have zero mean and finite second moment, Gn is recurrent if d=1 and transient if d≥2. In the transient case we show that Gn has a diffusive rate of escape. These results extend work of Grill, who considered simple symmetric random walk. We also give a class of random walks with symmetric heavy-tailed increments for which Gn is transient in d=1.

Keywords: Random walk; Centre of mass; Barycentre; Time-average; Recurrence classification; Local central limit theorem; Rate of escape (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414918307130
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:129:y:2019:i:11:p:4663-4686

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2018.12.007

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:129:y:2019:i:11:p:4663-4686