Backward stochastic Volterra integral equations—Representation of adapted solutions
Tianxiao Wang and
Jiongmin Yong
Stochastic Processes and their Applications, 2019, vol. 129, issue 12, 4926-4964
Abstract:
For backward stochastic Volterra integral equations (BSVIEs, for short), under some mild conditions, the so-called adapted solutions or adapted M-solutions uniquely exist. However, satisfactory regularity of the solutions is difficult to obtain in general. Inspired by the decoupling idea of forward–backward stochastic differential equations, in this paper, for a class of BSVIEs, a representation of adapted M-solutions is established by means of the so-called representation partial differential equations and (forward) stochastic differential equations. Well-posedness of the representation partial differential equations are also proved in certain sense.
Keywords: Backward stochastic Volterra integral equations; Adapted solutions; Representation partial differential equations; Representation of adapted solutions. (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414918307555
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:129:y:2019:i:12:p:4926-4964
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2018.12.016
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().