Stochastically forced cardiac bidomain model
M. Bendahmane and
K.H. Karlsen
Stochastic Processes and their Applications, 2019, vol. 129, issue 12, 5312-5363
Abstract:
The bidomain system of degenerate reaction–diffusion equations is a well-established spatial model of electrical activity in cardiac tissue, with “reaction” linked to the cellular action potential and “diffusion” representing current flow between cells. The purpose of this paper is to introduce a “stochastically forced” version of the bidomain model that accounts for various random effects. We establish the existence of martingale (probabilistic weak) solutions to the stochastic bidomain model. The result is proved by means of an auxiliary nondegenerate system and the Faedo–Galerkin method. To prove convergence of the approximate solutions, we use the stochastic compactness method and Skorokhod–Jakubowski a.s. representations. Finally, via a pathwise uniqueness result, we conclude that the martingale solutions are pathwise (i.e., probabilistic strong) solutions.
Keywords: Stochastic partial differential equation; Reaction–diffusion system; Degenerate; Weak solution; Existence; Uniqueness; Bidomain model; Cardiac electric field (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414919301371
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:129:y:2019:i:12:p:5312-5363
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2019.03.001
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().