Bridge representation and modal-path approximation
Jiro Akahori,
Xiaoming Song and
Tai-Ho Wang
Stochastic Processes and their Applications, 2019, vol. 129, issue 1, 174-204
Abstract:
The article shows a bridge representation for the joint density of a system of stochastic processes consisting of a Brownian motion with drift coupled with a correlated fractional Brownian motion with drift. As a result, a small time approximation of the joint density is readily obtained by substituting the conditional expectation under the bridge measure by a single path: the modal-path from the initial point to the terminal point.
Keywords: Asymptotic expansion; Mixed fractional Brownian motion; Bridge representation; Modal-path approximation (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414918300309
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:129:y:2019:i:1:p:174-204
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2018.02.013
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().