The Vlasov–Poisson–Fokker–Planck equation in an interval with kinetic absorbing boundary conditions
Hyung Ju Hwang and
Jinoh Kim
Stochastic Processes and their Applications, 2019, vol. 129, issue 1, 240-282
Abstract:
We study the initial–boundary value problem for the Vlasov–Poisson–Fokker–Planck equations in an interval with absorbing boundary conditions. We first prove the existence of weak solutions of the linearized equation in an interval with absorbing boundary conditions. Moreover, the weak solution converges to zero exponentially in time. Then we extend the above results to the fully nonlinear Vlasov–Poisson–Fokker–Planck equations in an interval with absorbing boundary conditions; the existence and the longtime behavior of weak solutions. Finally, we prove that the weak solution is actually a classical solution by showing the hypoellipticity of the solution away from the grazing set and the Hölder continuity of the solution up to the grazing set.
Keywords: Partial differential equation; Kinetic theory; Vlasov–Poisson–Fokker–Planck equation; Absorbing boundary value problem; Non-linear equation; Feynman–Kac formula (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414918300413
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:129:y:2019:i:1:p:240-282
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2018.02.016
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().