Multidimensional random walk with reflections
Judith Kloas and
Wolfgang Woess
Stochastic Processes and their Applications, 2019, vol. 129, issue 1, 336-354
Abstract:
Reflected random walk in higher dimension arises from an ordinary random walk (sum of i.i.d. random variables): whenever one of the reflecting coordinates becomes negative, its sign is changed, and the process continues from that modified position. One-dimensional reflected random walk is quite well understood from work in 7 decades, but the multidimensional model presents several new difficulties. Here we investigate recurrence questions.
Keywords: Reflected random walk; Recurrence; Invariant measure; Local contractivity; Stochastic iterated function system (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414918300449
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:129:y:2019:i:1:p:336-354
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2018.03.003
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().