EconPapers    
Economics at your fingertips  
 

Synchronization and functional central limit theorems for interacting reinforced random walks

Irene Crimaldi, Paolo Dai Pra, Pierre-Yves Louis and Ida G. Minelli

Stochastic Processes and their Applications, 2019, vol. 129, issue 1, 70-101

Abstract: We obtain Central Limit Theorems in Functional form for a class of time-inhomogeneous interacting random walks. Due to a reinforcement mechanism and interaction, the walks are strongly correlated and converge almost surely to the same, possibly random, limit. We study random walks interacting through a mean-field rule and compare the rate they converge to their limit with the rate of synchronization, i.e. the rate at which their mutual distances converge to zero. We show that, under certain conditions, synchronization is faster than convergence. Even if our focus is on theoretical results, we propose as main motivations two contexts in which such results could directly apply: urn models and opinion dynamics in a random network evolving via preferential attachment.

Keywords: Interacting random systems; Synchronization; Functional central limit theorems; Urn models; Reinforced processes; Dynamics on random graphs (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414918300292
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:129:y:2019:i:1:p:70-101

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2018.02.012

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:129:y:2019:i:1:p:70-101