Linear Volterra backward stochastic integral equations
Yaozhong Hu and
Bernt Øksendal
Stochastic Processes and their Applications, 2019, vol. 129, issue 2, 626-633
Abstract:
We present an explicit solution triplet (Y,Z,K) to the backward stochastic Volterra integral equation (BSVIE) of linear type, driven by a Brownian motion and a compensated Poisson random measure. The process Y is expressed by an integral whose kernel is explicitly given. The processes Z and K are expressed by Hida–Malliavin derivatives involving Y.
Keywords: Brownian motion; Compensated Poisson random measure; Volterra type backward stochastic differential equation; Linear equation; Explicit solution; Hida–Malliavin derivative (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414918300577
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:129:y:2019:i:2:p:626-633
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2018.03.016
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().