Representation of asymptotic values for nonexpansive stochastic control systems
Juan Li and
Nana Zhao
Stochastic Processes and their Applications, 2019, vol. 129, issue 2, 634-673
Abstract:
In ergodic stochastic problems the limit of the value function Vλ of the associated discounted cost functional with infinite time horizon is studied, when the discounted factor λ tends to zero. These problems have been well studied in the literature and the used assumptions guarantee that the value function λVλ converges uniformly to a constant as λ→0. The objective of this work consists in studying these problems under the assumption, namely, the nonexpansivity assumption, under which the limit function is not necessarily constant. Our discussion goes beyond the case of the stochastic control problem with infinite time horizon and discusses also Vλ given by a Hamilton–Jacobi–Bellman equation of second order which is not necessarily associated with a stochastic control problem. On the other hand, the stochastic control case generalizes considerably earlier works by considering cost functionals defined through a backward stochastic differential equation with infinite time horizon and we give an explicit representation formula for the limit of λVλ, as λ→0.
Keywords: Stochastic nonexpansivity condition; Limit value; BSDE (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414918300565
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:129:y:2019:i:2:p:634-673
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2018.03.015
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().