EconPapers    
Economics at your fingertips  
 

The dynamics of critical fluctuations in asymmetric Curie–Weiss models

Paolo Dai Pra and Daniele Tovazzi

Stochastic Processes and their Applications, 2019, vol. 129, issue 3, 1060-1095

Abstract: We study the dynamics of fluctuations at the critical point for two time-asymmetric version of the Curie–Weiss model for spin systems that, in the macroscopic limit, undergo a Hopf bifurcation. The fluctuations around the macroscopic limit reflect the type of bifurcation, as they exhibit observables whose fluctuations evolve at different time scales. The limiting dynamics of fluctuations of slow observable is obtained via an averaging principle.

Keywords: Interacting particle systems; Mean-field interaction; Averaging principle (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414918301054
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:129:y:2019:i:3:p:1060-1095

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2018.04.005

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:129:y:2019:i:3:p:1060-1095