EconPapers    
Economics at your fingertips  
 

Central limit theorems for biased randomly trapped random walks on Z

Adam Bowditch

Stochastic Processes and their Applications, 2019, vol. 129, issue 3, 740-770

Abstract: We prove CLTs for biased randomly trapped random walks in one dimension. By considering a sequence of regeneration times, we will establish an annealed invariance principle under a second moment condition on the trapping times. In the quenched setting, an environment dependent centring is necessary to achieve a central limit theorem. We determine a suitable expression for this centring. As our main motivation, we apply these results to biased walks on subcritical Galton–Watson trees conditioned to survive for a range of bias values.

Keywords: Random walk; Random environment; Randomly trapped; Galton–Watson tree; Annealed; Quenched; Functional central limit theorem; Invariance principle (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414918300668
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:129:y:2019:i:3:p:740-770

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2018.03.017

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:129:y:2019:i:3:p:740-770