On the link between infinite horizon control and quasi-stationary distributions
Nicolas Champagnat and
Julien Claisse
Stochastic Processes and their Applications, 2019, vol. 129, issue 3, 771-798
Abstract:
We study infinite horizon control of continuous-time non-linear branching processes with almost sure extinction for general (positive or negative) discount. Our main goal is to study the link between infinite horizon control of these processes and an optimization problem involving their quasi-stationary distributions and the corresponding extinction rates. More precisely, we obtain an equivalent of the value function when the discount parameter is close to the threshold where the value function becomes infinite, and we characterize the optimal Markov control in this limit. To achieve this, we present a new proof of the dynamic programming principle based upon a pseudo-Markov property for controlled jump processes. We also prove the convergence to a unique quasi-stationary distribution of non-linear branching processes controlled by a Markov control conditioned on non-extinction.
Keywords: Optimal stochastic control; Infinite horizon control; Branching process; Quasi-stationary distribution; Dynamic programming (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030441491830067X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:129:y:2019:i:3:p:771-798
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2018.03.018
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().