Stochastic and partial differential equations on non-smooth time-dependent domains
Niklas L.P. Lundström and
Thomas Önskog
Stochastic Processes and their Applications, 2019, vol. 129, issue 4, 1097-1131
Abstract:
In this article, we consider non-smooth time-dependent domains whose boundary is W1,p in time and single-valued, smoothly varying directions of reflection at the boundary. In this setting, we first prove existence and uniqueness of strong solutions to stochastic differential equations with oblique reflection. Secondly, we prove, using the theory of viscosity solutions, a comparison principle for fully nonlinear second-order parabolic partial differential equations with oblique derivative boundary conditions. As a consequence, we obtain uniqueness, and, by barrier construction and Perron’s method, we also conclude existence of viscosity solutions. Our results generalize two articles by Dupuis and Ishii to time-dependent domains.
Keywords: Reflected diffusion; Skorohod problem; Oblique reflection; Time-dependent domain; Stochastic differential equations; Non-smooth domain; Viscosity solution; Parabolic partial differential equation; Comparison principle; Existence; Uniqueness (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030441491830111X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:129:y:2019:i:4:p:1097-1131
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2018.04.006
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().