EconPapers    
Economics at your fingertips  
 

Concentration of dynamic risk measures in a Brownian filtration

Ludovic Tangpi

Stochastic Processes and their Applications, 2019, vol. 129, issue 5, 1477-1491

Abstract: Motivated by liquidity risk in mathematical finance, Lacker (2015) introduced concentration inequalities for risk measures, i.e. upper bounds on the liquidity risk profile of a financial loss. We derive these inequalities in the case of time-consistent dynamic risk measures when the filtration is assumed to carry a Brownian motion. The theory of backward stochastic differential equations (BSDEs) and their dual formulation plays a crucial role in our analysis. Natural by-products of concentration of risk measures are a description of the tail behavior of the financial loss and transport-type inequalities in terms of the generator of the BSDE, which in the present case can grow arbitrarily fast.

Keywords: Dynamic risk measures; Backward stochastic differential equations; Brownian filtration; Superquadratic growth; Concentration inequalities; Transportation inequalities (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414918301959
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:129:y:2019:i:5:p:1477-1491

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2018.05.008

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:129:y:2019:i:5:p:1477-1491