Absolute continuity of the law for the two dimensional stochastic Navier–Stokes equations
Benedetta Ferrario and
Margherita Zanella
Stochastic Processes and their Applications, 2019, vol. 129, issue 5, 1568-1604
Abstract:
We consider the two dimensional Navier–Stokes equations in vorticity form with a stochastic forcing term given by a gaussian noise, white in time and colored in space. First, we prove existence and uniqueness of a weak (in the Walsh sense) solution process ξ and we show that, if the initial vorticity ξ0 is continuous in space, then there exists a space–time continuous version of the solution. In addition we show that the solution ξ(t,x) (evaluated at fixed points in time and space) is locally differentiable in the Malliavin calculus sense and that its image law is absolutely continuous with respect to the Lebesgue measure on R.
Keywords: Malliavin calculus; Density of the solution; Gaussian noise; Stochastic Navier–Stokes equations (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414918302497
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:129:y:2019:i:5:p:1568-1604
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2018.05.015
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().