EconPapers    
Economics at your fingertips  
 

Quasistationary distributions for one-dimensional diffusions with singular boundary points

Alexandru Hening and Martin Kolb

Stochastic Processes and their Applications, 2019, vol. 129, issue 5, 1659-1696

Abstract: In the present work we characterize the existence of quasistationary distributions for diffusions on (0,∞) allowing singular behavior at 0 and ∞. If absorption at 0 is certain, we show that there exists a quasistationary distribution as soon as the spectrum of the generator is strictly positive. This complements results of Cattiaux et al. (2009) and Kolb and Steinsaltz (2012) for 0 being a regular boundary point and extends results by Cattiaux et al. (2009) on singular diffusions.

Keywords: One-dimensional diffusion; Quasistationary distribution; Yaglom limit; Q process (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414918302461
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:129:y:2019:i:5:p:1659-1696

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2018.05.012

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:129:y:2019:i:5:p:1659-1696