A scaling analysis of a star network with logarithmic weights
Philippe Robert and
Amandine Véber
Stochastic Processes and their Applications, 2019, vol. 129, issue 5, 1749-1781
Abstract:
The paper investigates the properties of a class of resource allocation algorithms for communication networks: if a node of this network has L requests to transmit and is idle, it tries to access the channel at a rate proportional to log(1+L). A stochastic model of such an algorithm is investigated in the case of the star network, in which J nodes can transmit simultaneously, but interfere with a central node 0 in such a way that node 0 cannot transmit while one of the other nodes does. One studies the impact of the log policy on these J+1 interacting communication nodes. A fluid scaling analysis of the network is derived with the scaling parameter N being the norm of the initial state. It is shown that the asymptotic fluid behavior of the system is a consequence of the evolution of the state of the network on a specific time scale (Nt,t∈(0,1)). The main result is that, on this time scale and under appropriate conditions, the state of a node with index j≥1 is of the order of Naj(t), with 0≤aj(t)<1, where t↦aj(t) is a piecewise linear function. Convergence results on the fluid time scale and a stability property are derived as a consequence of this study.
Keywords: Communication networks; Fluid scaling; Separation of timescales (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414918302746
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:129:y:2019:i:5:p:1749-1781
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2018.06.002
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().