EconPapers    
Economics at your fingertips  
 

The first hitting time of the integers by symmetric Lévy processes

Yasuki Isozaki

Stochastic Processes and their Applications, 2019, vol. 129, issue 5, 1782-1794

Abstract: For one-dimensional Brownian motion, the exit time from an interval has finite exponential moments and its probability density is expanded in exponential terms. In this note we establish its counterpart for certain symmetric Lévy processes. Applying the theory of Pick functions, we study properties of the Laplace transform of the first hitting time of the integer lattice as a meromorphic function in detail. Its density is expanded in exponential terms and the poles and the zeros of a Pick function play a crucial role.

Keywords: Lévy process; Probabilistic potential theory; Pick function; Fractional linear transformations (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414918302734
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:129:y:2019:i:5:p:1782-1794

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2018.06.001

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:129:y:2019:i:5:p:1782-1794