The first hitting time of the integers by symmetric Lévy processes
Yasuki Isozaki
Stochastic Processes and their Applications, 2019, vol. 129, issue 5, 1782-1794
Abstract:
For one-dimensional Brownian motion, the exit time from an interval has finite exponential moments and its probability density is expanded in exponential terms. In this note we establish its counterpart for certain symmetric Lévy processes. Applying the theory of Pick functions, we study properties of the Laplace transform of the first hitting time of the integer lattice as a meromorphic function in detail. Its density is expanded in exponential terms and the poles and the zeros of a Pick function play a crucial role.
Keywords: Lévy process; Probabilistic potential theory; Pick function; Fractional linear transformations (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414918302734
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:129:y:2019:i:5:p:1782-1794
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2018.06.001
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().