EconPapers    
Economics at your fingertips  
 

Distributions of a particle’s position and their asymptotics in the q-deformed totally asymmetric zero range process with site dependent jumping rates

Eunghyun Lee and Dong Wang

Stochastic Processes and their Applications, 2019, vol. 129, issue 5, 1795-1828

Abstract: In this paper we study the probability distribution of the position of a tagged particle in the q-deformed Totally Asymmetric Zero Range Process (q-TAZRP) with site dependent jumping rates. For a finite particle system, it is derived from the transition probability previously obtained by Wang and Waugh. We also provide the probability distribution formula for a tagged particle in the q-TAZRP with the so-called step initial condition in which infinitely many particles occupy one single site and all other sites are unoccupied. For the q-TAZRP with step initial condition, we provide a Fredholm determinant representation for the probability distribution function of the position of a tagged particle, and moreover we obtain the limiting distribution function as the time goes to infinity. Our asymptotic result for q-TAZRP with step initial condition is comparable to the limiting distribution function obtained by Tracy and Widom for the kth leftmost particle in the asymmetric simple exclusion process with step initial condition (Theorem 2 in Tracy and Widom (2009)).

Keywords: q-deformed totally asymmetric zero range process; Coordinate Bethe ansatz; Limiting distribution; Integrable probability (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414918302771
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:129:y:2019:i:5:p:1795-1828

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2018.06.005

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:129:y:2019:i:5:p:1795-1828