The split-and-drift random graph, a null model for speciation
François Bienvenu,
Florence Débarre and
Amaury Lambert
Stochastic Processes and their Applications, 2019, vol. 129, issue 6, 2010-2048
Abstract:
We introduce a new random graph model motivated by biological questions relating to speciation. This random graph is defined as the stationary distribution of a Markov chain on the space of graphs on {1,…,n}. The dynamics of this Markov chain is governed by two types of events: vertex duplication, where at constant rate a pair of vertices is sampled uniformly and one of these vertices loses its incident edges and is rewired to the other vertex and its neighbors; and edge removal, where each edge disappears at constant rate. Besides the number of vertices n, the model has a single parameter rn.
Keywords: Dynamical network; Duplication-divergence; Vertex duplication; Genetic drift; Species problem; Coalescent (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414918303004
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:129:y:2019:i:6:p:2010-2048
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2018.06.009
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().