EconPapers    
Economics at your fingertips  
 

Brownian motion with drift on spaces with varying dimension

Shuwen Lou

Stochastic Processes and their Applications, 2019, vol. 129, issue 6, 2086-2129

Abstract: Many properties of Brownian motion on spaces with varying dimension (BMVD in abbreviation) have been explored in Chen and Lou (2018). In this paper, we study Brownian motion with drift on spaces with varying dimension (BMVD with drift in abbreviation). Such a process can be conveniently defined by a regular Dirichlet form that is not necessarily symmetric. Through the method of Duhamel’s principle, it is established in this paper that the transition density of BMVD with drift has the same type of two-sided Gaussian bounds as that for BMVD (without drift). As a corollary, we derive Green function estimate for BMVD with drift.

Keywords: Space of varying dimension; Brownian motion; Laplacian; Singular drift; Transition density function; Heat kernel estimates; Green function (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414918303065
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:129:y:2019:i:6:p:2086-2129

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2018.07.001

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:129:y:2019:i:6:p:2086-2129