Weakly interacting particle systems on inhomogeneous random graphs
Shankar Bhamidi,
Amarjit Budhiraja and
Ruoyu Wu
Stochastic Processes and their Applications, 2019, vol. 129, issue 6, 2174-2206
Abstract:
We consider weakly interacting diffusions on time varying random graphs. The system consists of a large number of nodes in which the state of each node is governed by a diffusion process that is influenced by the neighboring nodes. The collection of neighbors of a given node changes dynamically over time and is determined through a time evolving random graph process. A law of large numbers and a propagation of chaos result is established for a multi-type population setting where at each instant the interaction between nodes is given by an inhomogeneous random graph which may change over time. This result covers the setting in which the edge probabilities between any two nodes are allowed to decay to 0 as the size of the system grows. A central limit theorem is established for the single-type population case under stronger conditions on the edge probability function.
Keywords: Inhomogeneous random graphs; Dynamical random graphs; Weakly interacting diffusions; Propagation of chaos; Central limit theorems; Multi-type populations; Interacting particle systems (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414918303053
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:129:y:2019:i:6:p:2174-2206
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2018.06.014
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().