Peacocks nearby: Approximating sequences of measures
Stefan Gerhold and
I. Cetin Gülüm
Stochastic Processes and their Applications, 2019, vol. 129, issue 7, 2406-2436
Abstract:
A peacock is a family of probability measures with finite mean that increases in convex order. It is a classical result, in the discrete time case due to Strassen, that any peacock is the family of one-dimensional marginals of a martingale. We study the problem whether a given sequence of probability measures can be approximated by a peacock. In our main results, the approximation quality is measured by the infinity Wasserstein distance. Existence of a peacock within a prescribed distance is reduced to a countable collection of rather explicit conditions. This result has a financial application (developed in a separate paper), as it allows to check European call option quotes for consistency. The distance bound on the peacock then takes the role of a bound on the bid–ask spread of the underlying. We also solve the approximation problem for the stop-loss distance, the Lévy distance, and the Prokhorov distance.
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414918303235
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:129:y:2019:i:7:p:2406-2436
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2018.07.007
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().