Behavior of the Hermite sheet with respect to theHurst index
Héctor Araya and
Ciprian A. Tudor
Stochastic Processes and their Applications, 2019, vol. 129, issue 7, 2582-2605
Abstract:
We consider a d-parameter Hermite process with Hurst index H=(H1,..,Hd)∈12,1d and we study its limit behavior in distribution when the Hurst parameters Hi,i=1,..,d (or a part of them) converge to 12 and/or 1. The limit obtained is Gaussian (when at least one parameter tends to 12) and non-Gaussian (when at least one-parameter tends to 1 and none converges to 12).
Keywords: Wiener chaos; Hermite process; Rosenblatt process; Fractional Brownian motion; Multiple stochastic integrals; Cumulants; Self-similarity; Multiparameter stochastic processes (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414918303715
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:129:y:2019:i:7:p:2582-2605
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2018.07.017
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().