EconPapers    
Economics at your fingertips  
 

Behavior of the Hermite sheet with respect to theHurst index

Héctor Araya and Ciprian A. Tudor

Stochastic Processes and their Applications, 2019, vol. 129, issue 7, 2582-2605

Abstract: We consider a d-parameter Hermite process with Hurst index H=(H1,..,Hd)∈12,1d and we study its limit behavior in distribution when the Hurst parameters Hi,i=1,..,d (or a part of them) converge to 12 and/or 1. The limit obtained is Gaussian (when at least one parameter tends to 12) and non-Gaussian (when at least one-parameter tends to 1 and none converges to 12).

Keywords: Wiener chaos; Hermite process; Rosenblatt process; Fractional Brownian motion; Multiple stochastic integrals; Cumulants; Self-similarity; Multiparameter stochastic processes (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414918303715
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:129:y:2019:i:7:p:2582-2605

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2018.07.017

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:129:y:2019:i:7:p:2582-2605