EconPapers    
Economics at your fingertips  
 

Strong convergence of the Euler–Maruyama approximation for a class of Lévy-driven SDEs

Franziska Kühn and René L. Schilling

Stochastic Processes and their Applications, 2019, vol. 129, issue 8, 2654-2680

Abstract: Consider the following stochastic differential equation (SDE) dXt=b(t,Xt−)dt+dLt,X0=x,driven by a d-dimensional Lévy process (Lt)t≥0. We establish conditions on the Lévy process and the drift coefficient b such that the Euler–Maruyama approximation converges strongly to a solution of the SDE with an explicitly given rate. The convergence rate depends on the regularity of b and the behaviour of the Lévy measure at the origin. As a by-product of the proof, we obtain that the SDE has a pathwise unique solution. Our result covers many important examples of Lévy processes, e.g. isotropic stable, relativistic stable, tempered stable and layered stable.

Keywords: Euler–Maruyama approximation; Stochastic differential equation; Strong convergence (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414918303880
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:129:y:2019:i:8:p:2654-2680

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2018.07.018

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:129:y:2019:i:8:p:2654-2680