Existence and pathwise uniqueness to an SPDE driven by α-stable colored noise
Jie Xiong and
Xu Yang
Stochastic Processes and their Applications, 2019, vol. 129, issue 8, 2681-2722
Abstract:
In this paper we study a stochastic partial differential equation (SPDE) with Hölder continuous coefficient driven by an α-stable colored noise. The pathwise uniqueness is proved by using a backward doubly stochastic differential equation backward (SDE) to take care of the Laplacian. The existence of solution is shown by considering the weak limit of a sequence of SDE system which is obtained by replacing the Laplacian operator in the SPDE by its discrete version. We also study an SDE system driven by Poisson random measures.
Keywords: Stochastic partial differential equation; Colored noise; Stable; Existence; Pathwise uniqueness (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030441491830406X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:129:y:2019:i:8:p:2681-2722
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2018.08.003
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().