EconPapers    
Economics at your fingertips  
 

The asymmetric multitype contact process

Thomas Mountford, Pedro Luis Barrios Pantoja and Daniel Valesin

Stochastic Processes and their Applications, 2019, vol. 129, issue 8, 2783-2820

Abstract: We study the multitype contact process on Zd under the assumption that one of the types has a birth rate that is larger than that of the other type, and larger than the critical value of the standard contact process. We prove that, if initially present, the stronger type has a positive probability of never going extinct. Conditionally on this event, it takes over a ball of radius growing linearly in time. We also completely characterize the set of stationary distributions of the process and prove a complete convergence theorem.

Date: 2019
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414918304113
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:129:y:2019:i:8:p:2783-2820

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2018.08.006

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:129:y:2019:i:8:p:2783-2820