LAN property for stochastic differential equations with additive fractional noise and continuous time observation
Yanghui Liu,
Eulalia Nualart and
Samy Tindel
Stochastic Processes and their Applications, 2019, vol. 129, issue 8, 2880-2902
Abstract:
We consider a stochastic differential equation with additive fractional noise with Hurst parameter H>1∕2, and a non-linear drift depending on an unknown parameter. We show the Local Asymptotic Normality property (LAN) of this parametric model with rate τ as τ→∞, when the solution is observed continuously on the time interval [0,τ]. The proof uses ergodic properties of the equation and a Girsanov-type transform. We analyze the particular case of the fractional Ornstein–Uhlenbeck process and show that the Maximum Likelihood Estimator is asymptotically efficient in the sense of the Minimax Theorem.
Keywords: Fractional Brownian motion; Parameter estimation; Ergodicity (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414918304198
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:129:y:2019:i:8:p:2880-2902
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2018.08.008
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().