A continuous-state polynomial branching process
Pei-Sen Li
Stochastic Processes and their Applications, 2019, vol. 129, issue 8, 2941-2967
Abstract:
A continuous-state polynomial branching process is constructed as the pathwise unique solution of a stochastic integral equation with absorbing boundary condition. The process can also be obtained from a spectrally positive Lévy process through Lamperti type transformations. The extinction and explosion probabilities and the mean extinction and explosion times are computed explicitly. Some of those are also new for the classical linear branching process. We present necessary and sufficient conditions for the process to extinguish or explode in finite times. In the critical or subcritical case, we give a construction of the process coming down from infinity. Finally, it is shown that the continuous-state polynomial branching process arises naturally as the rescaled limit of a sequence of discrete-state processes.
Keywords: Branching process; Continuous-state; Polynomial branching; Stochastic integral equation; Lamperti transformation; Extinction; Explosion (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414918304538
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:129:y:2019:i:8:p:2941-2967
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2018.08.013
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().