Optimal rates for parameter estimation of stationary Gaussian processes
Khalifa Es-Sebaiy and
Frederi G. Viens
Stochastic Processes and their Applications, 2019, vol. 129, issue 9, 3018-3054
Abstract:
We study rates of convergence in central limit theorems for partial sums of polynomial functionals of general stationary and asymptotically stationary Gaussian sequences, using tools from analysis on Wiener space. In the quadratic case, thanks to newly developed optimal tools, we derive sharp results, i.e. upper and lower bounds of the same order, where the convergence rates are given explicitly in the Wasserstein distance via an analysis of the functionals’ absolute third moments. These results are tailored to the question of parameter estimation, which introduces a need to control variance convergence rates. We apply our result to study drift parameter estimation problems for some stochastic differential equations driven by fractional Brownian motion with fixed-time-step observations.
Keywords: Central limit theorem; Berry–Esséen; Stationary Gaussian processes; Nourdin–Peccati analysis; Parameter estimation; Fractional Brownian motion (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414918304502
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:129:y:2019:i:9:p:3018-3054
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2018.08.010
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().