Maximal displacement of a supercritical branching random walk in a time-inhomogeneous random environment
Bastien Mallein and
Piotr Miłoś
Stochastic Processes and their Applications, 2019, vol. 129, issue 9, 3239-3260
Abstract:
The behavior of the maximal displacement of a supercritical branching random walk has been a subject of intense studies for a long time. But only recently the case of time-inhomogeneous branching has gained focus. The contribution of this paper is to analyze a time-inhomogeneous model with two levels of randomness. In the first step a sequence of branching laws is sampled independently according to a distribution on the set of point measures’ laws. Conditionally on the realization of this sequence (called environment) we define a branching random walk and find the asymptotic behavior of its maximal particle. It is of the form Vn−φlogn+oP(logn), where Vn is a function of the environment that behaves as a random walk and φ>0 is a deterministic constant, which turns out to be bigger than the usual logarithmic correction of the homogeneous branching random walk.
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414918304794
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:129:y:2019:i:9:p:3239-3260
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2018.09.008
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().