Two explicit Skorokhod embeddings for simple symmetric random walk
Xue Dong He,
Sang Hu,
Jan Obłój and
Xun Yu Zhou
Stochastic Processes and their Applications, 2019, vol. 129, issue 9, 3431-3445
Abstract:
Motivated by problems in behavioural finance, we provide two explicit constructions of a randomized stopping time which embeds a given centred distribution μ on integers into a simple symmetric random walk in a uniformly integrable manner. Our first construction has a simple Markovian structure: at each step, we stop if an independent coin with a state-dependent bias returns tails. Our second construction is a discrete analogue of the celebrated Azéma–Yor solution and requires independent coin tosses only when excursions away from maximum breach predefined levels. Further, this construction maximizes the distribution of the stopped running maximum among all uniformly integrable embeddings of μ.
Keywords: Skorokhod embedding; Simple symmetric random walk; Randomized stopping time; Azéma–Yor stopping time (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414918305337
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:129:y:2019:i:9:p:3431-3445
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2018.09.013
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().