On categorical time series models with covariates
Konstantinos Fokianos and
Lionel Truquet
Stochastic Processes and their Applications, 2019, vol. 129, issue 9, 3446-3462
Abstract:
We study the problem of stationarity and ergodicity for autoregressive multinomial logistic time series models which possibly include a latent process and are defined by a GARCH-type recursive equation. We improve considerably upon the existing conditions about stationarity and ergodicity of those models. Proofs are based on theory developed for chains with complete connections. A useful coupling technique is employed for studying ergodicity of infinite order finite-state stochastic processes which generalize finite-state Markov chains. Furthermore, for the case of finite order Markov chains, we discuss ergodicity properties of a model which includes strongly exogenous but not necessarily bounded covariates.
Keywords: Autoregression; Categorical data; Chains with complete connection; Coupling; Covariates; Ergodicity; Markov chains (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414918305325
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:129:y:2019:i:9:p:3446-3462
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2018.09.012
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().