Laws of large numbers for supercritical branching Gaussian processes
Michael A. Kouritzin,
Khoa Lê and
Deniz Sezer
Stochastic Processes and their Applications, 2019, vol. 129, issue 9, 3463-3498
Abstract:
A general class of non-Markov, supercritical Gaussian branching particle systems is introduced and its long-time asymptotics is studied. Both weak and strong laws of large numbers are developed with the limit object being characterized in terms of particle motion/mutation. Long memory processes, like branching fractional Brownian motion and fractional Ornstein–Uhlenbeck processes with large Hurst parameters, as well as rough processes, like fractional processes with smaller Hurst parameter, are included as important examples. General branching with second moments is allowed and moment measure techniques are utilized.
Keywords: Fractional Brownian motion; Branching processes; Laws of large numbers (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414918305313
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:129:y:2019:i:9:p:3463-3498
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2018.09.011
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().