EconPapers    
Economics at your fingertips  
 

Local times of stochastic processes with positive definite bivariate densities

Simeon M. Berman

Stochastic Processes and their Applications, 1981, vol. 12, issue 1, 1-26

Abstract: A new class of stochastic processes, called processes of positive bivariate type, is defined. Such a process is typically one whose bivariate density functions are positive definite, at least for pairs of time points which are sufficiently mutually close. The class includes stationary Gaussian processes and stationary reversible Markov processes, and is closed under the operations of composition and convolution. The purpose of this work is to show that the local times of such processes can be investigated in a natural way. One of the main contributions is an orthogonal expansion of the local time which is new even in the well-studied stationary Gaussian case. The basic tool in its construction is the Lancaster-Sarmanov expansion of a bivariate density in a series of canonical correlations and canonical variables.

Date: 1981
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0304-4149(81)90009-0
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:12:y:1981:i:1:p:1-26

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:12:y:1981:i:1:p:1-26