Optimal scaling of random-walk metropolis algorithms on general target distributions
Jun Yang,
Gareth O. Roberts and
Jeffrey S. Rosenthal
Stochastic Processes and their Applications, 2020, vol. 130, issue 10, 6094-6132
Abstract:
One main limitation of the existing optimal scaling results for Metropolis–Hastings algorithms is that the assumptions on the target distribution are unrealistic. In this paper, we consider optimal scaling of random-walk Metropolis algorithms on general target distributions in high dimensions arising from practical MCMC models from Bayesian statistics. For optimal scaling by maximizing expected squared jumping distance (ESJD), we show the asymptotically optimal acceptance rate 0.234 can be obtained under general realistic sufficient conditions on the target distribution. The new sufficient conditions are easy to be verified and may hold for some general classes of MCMC models arising from Bayesian statistics applications, which substantially generalize the product i.i.d. condition required in most existing literature of optimal scaling. Furthermore, we show one-dimensional diffusion limits can be obtained under slightly stronger conditions, which still allow dependent coordinates of the target distribution. We also connect the new diffusion limit results to complexity bounds of Metropolis algorithms in high dimensions.
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414919306982
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:130:y:2020:i:10:p:6094-6132
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2020.05.004
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().